Sparse Matrix Ordering Methods for Interior Point

نویسندگان

  • Edward Rothberg
  • Bruce Hendrickson
چکیده

The main cost of solving a linear programming problem using an interior point method is usually the cost of solving a series of sparse, symmetric linear systems of equations, AA T x = b. These systems are typically solved using a sparse direct method. The rst step in such a method is a reordering of the rows and columns of the matrix to reduce ll in the factor and/or reduce the required work. This paper evaluates several methods for performing ll-reducing ordering on a variety of large-scale linear programming problems. We nd that a new method, based on the nested dissection heuristic, provides signiicantly better orderings than the most commonly used ordering method, minimum degree.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework

A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general met...

متن کامل

Exploiting Sparsity in Semide nite Programming via Matrix Completion I : General Framework ?

A critical disadvantage of primal-dual interior-point methods against dual interior-point methods for large scale SDPs (semidenite programs) has been that the primal positive semidenite variable matrix becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidenite matrix completion, this article proposes a general method of exp...

متن کامل

A Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem

In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.

متن کامل

Trust-region interior-point method for large sparse l 1 optimization

In this paper, we propose an interior-point method for large sparse l1 optimization. After a short introduction, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus nonconvex problems can be solved successfully. The results of computational experiments given in this paper confir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996